Control of KCa Channels by Calcium Nano/Microdomains
نویسندگان
چکیده
Transient elevations in cytoplasmic Ca(2+) trigger a multitude of Ca(2+)-dependent processes in CNS neurons and many other cell types. The specificity, speed, and reliability of these processes is achieved and ensured by tightly restricting Ca(2+) signals to very local spatiotemporal domains, "Ca(2+) nano- and microdomains," that are centered around Ca(2+)-permeable channels. This arrangement requires that the Ca(2+)-dependent effectors reside within these spatial boundaries where the properties of the Ca(2+) domain and the Ca(2+) sensor of the effector determine the channel-effector activity. We use Ca(2+)-activated K(+) channels (K(Ca)) with either micromolar (BK(Ca) channels) or submicromolar (SK(Ca) channels) affinity for Ca(2+) ions to provide distance constraints for Ca(2+)-effector coupling in local Ca(2+) domains and review their significance for the cell physiology of K(Ca) channels in the CNS. The results may serve as a model for other processes operated by local Ca(2+) domains.
منابع مشابه
Calcium microdomains at the immunological synapse: how ORAI channels, mitochondria and calcium pumps generate local calcium signals for efficient T-cell activation.
Cell polarization enables restriction of signalling into microdomains. Polarization of lymphocytes following formation of a mature immunological synapse (IS) is essential for calcium-dependent T-cell activation. Here, we analyse calcium microdomains at the IS with total internal reflection fluorescence microscopy. We find that the subplasmalemmal calcium signal following IS formation is suffici...
متن کاملGenetic ablation of caveolin-1 modifies Ca spark coupling in murine arterial smooth muscle cells
Cheng, Xiaoyang, and Jonathan H. Jaggar. Genetic ablation of caveolin-1 modifies Ca spark coupling in murine arterial smooth muscle cells. Am J Physiol Heart Circ Physiol 290: H2309–H2319, 2006. First published January 20, 2006; doi:10.1152/ajpheart.01226.2005.—Ltype, voltage-dependent calcium (Ca ) channels, ryanodine-sensitive Ca release (RyR) channels, and large-conductance Ca activated pota...
متن کاملApamin-sensitive small conductance calcium-activated potassium channels, through their selective coupling to voltage-gated calcium channels, are critical determinants of the precision, pace, and pattern of action potential generation in rat subthalamic nucleus neurons in vitro.
Distinct activity patterns in subthalamic nucleus (STN) neurons are observed during normal voluntary movement and abnormal movement in Parkinson's disease (PD). To determine how such patterns of activity are regulated by small conductance potassium (SK)/calcium-activated potassium (KCa) channels and voltage-gated calcium (Cav) channels, STN neurons were recorded in the perforated patch configur...
متن کاملChanges in the Ca -Activated K Channels of the Coronary Artery During Left Ventricular Hypertrophy
It has been suggested that impairment of smooth muscle cell (SMC) function by alterations in the Ca -activated K (KCa) channels accounts for the reduction in coronary reserve during left ventricular hypertrophy (LVH). However, this hypothesis has not been fully investigated. The main goal of this study was to assess whether the properties of KCa channels in coronary SMCs were altered during LVH...
متن کاملTGFbeta1 regulates the gating properties of intermediate-conductance KCa channels in developing parasympathetic neurons.
The developmental expression of Ca2+-activated K+ channels (KCa) in chick ciliary ganglion (CG) neurons is regulated by a target-derived avian isoform of TGFbeta1, which evokes a robust increase in the number of functional large-conductance (BK) KCa channels but which produces no change in their kinetics. However, CG neurons express multiple KCa channel subtypes. Here we show that TGFbeta1 regu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 59 شماره
صفحات -
تاریخ انتشار 2008